From copair hypergraphs to median graphs with latent vertices

نویسنده

  • Jean-Pierre Barthélemy
چکیده

The purpose of this paper is to extend the Buneman construction of partially labelled trees to the general case. This extension is related with the characterization of median graphs by Mulder and Schrijver. In the first section, we construct a graph G(H) associated with a copair hypergraph H on a finite set X and define the notion of a median graph with latent vertices (called X-median graph). The latent vertices (i.e. the vertices who are not labelled by elements of X) are obtained by iterating the median operation from actual (labelled) vertices. In the second section, we prove that the graph G(H) is an X-median graph. Then, in the last section, we study some special cases, the Buneman result is reobtained and the hypergraphs whose associated graphs are Hasse diagrams of distributive lattices are characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

The p-median and p-center Problems on Bipartite Graphs

Let $G$ be a bipartite graph. In this paper we consider the two kind of location problems namely $p$-center and $p$-median problems on bipartite graphs. The $p$-center and $p$-median problems asks to find a subset of vertices of cardinality $p$, so that respectively the maximum and sum of the distances from this set to all other vertices in $G$ is minimized. For each case we present some proper...

متن کامل

Total domishold graphs: A generalization of threshold graphs, with connections to threshold hypergraphs

A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total d...

متن کامل

On Universal Hypergraphs

A hypergraph H is called universal for a family F of hypergraphs, if it contains every hypergraph F ∈ F as a copy. For the family of r-uniform hypergraphs with maximum vertex degree bounded by ∆ and at most n vertices any universal hypergraph has to contain Ω(nr−r/∆) many edges. We exploit constructions of Alon and Capalbo to obtain universal r-uniform hypergraphs with the optimal number of edg...

متن کامل

Directed Moore Hypergraphs

For graphs with maximum degree A and diameter D, an upper bound on the number of vertices is 1 + AxF:-,‘(A 1)‘. This bound is called the Moore bound for graphs and the graphs that attain it are called Moore graphs. Similar bounds for directed graphs and for hypergraphs have been defined and the existence of directed Moore graphs and of Moore hypergraphs has been studied. In this article, we def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 76  شماره 

صفحات  -

تاریخ انتشار 1989